
MiniContext: Structured Hybrid Memory for Long-Horizon LLM Agents
Asanshay Gupta Charlotte Ka Yee Yan

Stanford University Department of Computer Science

The Problem: Context Pressure Breaks Agents
LLM agents in multi-step tasks must manage information that exceeds their
effective context windows. As sequences grow, agents:

Contradict earlier decisions when prior commitments fall out of context,
leading to inconsistent behavior that undermines task completion
Repeat solved subtasks, wasting compute by re-deriving conclusions the
agent has already reached in earlier steps
Get "lost in the middle", forgetting critical facts needed for downstream
reasoning

Scaling context length provides only partial relief. Longer windows delay but
do not eliminate capacity limits. Models struggle to utilize extended context
effectively, as attention degrades for information in the middle of long sequences
[Liu et al., 2024], and compute costs scale poorly with length. The core issue
is not capacity but policy: which information should persist, and in what form?

Why Existing Memory Systems Don’t Solve This
Current memory architectures extend effective context through sophisticated
storage, retrieval, and summarization mechanisms. However, they choose what
to retain using proxy signals rather than reasoning about task requirements:

Similarity-based retrieval surfaces information that matches the current
query embedding, but misses facts that are relevant yet semantically distant
Recency-based retention prioritizes recent context, discarding older
commitments and constraints the agent must still honor
Task-agnostic summarization compresses context without foresight,
losing details that turn out to be critical dependencies for future steps

Related Work
Long-context limitations. Scaling context length yields diminishing returns:
models exhibit degraded recall for information in the middle of long sequences
[Liu et al., 2024] and struggle with retrieval as context grows.
Replay and error propagation. Errors in agentic tasks compound across
steps [Xiong et al., 2025]. Retention failures early in a trajectory cascade into
downstream errors, making the cost of poor policies visible.
Cognitive architectures for agents. Work on LLM agents draws on cog-
nitive science models of memory, particularly the distinction between working
memory, episodic memory, and procedural knowledge [Sumers et al., 2024].
Memory-augmented LLMs. Mem0 [Chhikara et al., 2025] extracts and
consolidates facts with ADD/UPDATE/DELETE operations keyed to current
salience. A-MEM [Xu et al., 2025] links memories as Zettelkasten-style notes; H-
MEM [Sun & Zeng, 2025] adds hierarchical abstraction layers; Zep [Rasmussen
et al., 2025] introduces bi-temporal knowledge graphs for temporal reasoning.

MiniContext
To effectively evaluate this memory system in a realistic environment, we place
a model in an artificially context-limited environment. For example, although
GPT-4o-mini has a 128k context by default, we test using a 8k context limit to
effectively test the use of the memory system.
We implement 3 main strategies to make the best use of this context:

Agentic Context Engineering: Before each step, the agent has the
chance to edit the elements in its context, similar to Mem0. It can label
each one keep, drop, or summarize, which allows it to keep relevant
information.
Writing to memory: We then run a second LLM call over the system to
extract essential memories and store them in the appropriate buckets. All
episodes are stored to episodic memory as is, and the agent selects
procedures and facts for procedural and semantic memory.
Retrieval of relevant memories: Finally, at each step we retrieve the
top-k most relevant memories from each bucket. This allows us to augment
the agent with only step-specific memories instead of generic context.

I need to find out what the latest
product from Thinky Machines is…
Hmm, where should I start? Perhaps
checking their official website would
provide the most accurate and up-to-
date information. Companies often
announce new products on their
homepage or in a dedicated 'News' or
'Press Release' section.

Alternatively, I could look at their social
media channels—Twitter, LinkedIn, or
even Instagram—since companies tend
to post product launches there quickly
to engage their audience. I should also
consider tech news websites or blogs
that cover industry updates; they often
report on major product launches and
provide detailed analyses.

If I want insights from real users,
browsing forums like Reddit or tech
communities might reveal discussions
about Thinky Machines' newest release.
Lastly, setting a Google News alert for
'Thinky Machines latest product' could
help me stay informed if I'm not in a
rush.

Reasoning
web_search
{
 query: ‘thinky
machines latest
product’,
 num_results: 10,
}

Tool Call
Found 10 results:
1. https://thinkymachines.ai/blog/
tinker: Today, we are launching
Tinker, a flexible API for fine-tuning
language models. It empowers
researchers and hackers to
experiment with models by giving
them control over the algorithms
and data while we handle the
complexity of distributed training.
Tinker advances our mission of
enabling more people to do research
on cutting-edge models and
customize them to their needs.

Tool Result

Old Context

Updated MiniContext
History after ACE Retrieved memories

Agentic Context Engineering (ACE)1

Procedural

SemanticEpisodic

Update Memory System2

SUMMARIZE DROP KEEP

3

Figure 1. The MiniContext context management and memory system transforms an old bloated context into a
seamless hybrid of history and memory.

Evaluation
We evaluate on LongBench v2, which consists of 503 multiple-choice ques-
tions over documents from 8K to 2M words, spanning dialogue tracking to
code-repository analysis.
Why this benchmark? The extreme context lengths and high difficulty force
models to identify and retain only what matters. Performance directly reflects
how well an agent prunes, compresses, and retrieves under a strict token budget.

Results

Baseline (Truncated) Embedding Search GPT-4o-mini (Unrestricted) Agentic RAG MiniContext (Ours)
Strategy

0

10

20

30

40

50

Ac
cu

rac
y (

%) 30.0% 32.0% 32.4% 34.0%

46.0%

LongBench v2
Random guess (25%)

Figure 2. LongBench v2 Accuracy

Short
(<32k)

Medium
(32-128k)

Long
(>128k)

Easy Hard

Baseline (Truncated)

Embedding Search

Agentic RAG

MiniContext (Ours)

25% 25% 43% 28% 31%

38% 25% 36% 33% 31%

25% 30% 50% 39% 31%

44% 50% 43% 50% 44%

LongBench v2 Accuracy by Strategy and Category

0

10

20

30

40

50

60

Accuracy (%)

Figure 3. LongBench v2 performance across categories

Analysis and Conclusions

As can be seen in Figure 2, the MiniContext agent performs significantly better
than SOTA methods like embedding search and Agentic RAG when given the
same context limit. In fact, the hybrid memory system in MiniContext outper-
forms the base model when run with the full 128k context.
Performance gains for MiniContext are especially visible in hard tasks, where
MiniContext achieves a significantly higher accuracy than other tasks due to
the relevant retrieved memories. In extremely long context environments, Agen-
tic RAG outperforms MiniContext, which seems to be because at the limited
context, MiniContext fails to leave enough space for new information when sum-
marizing.
MiniContext demonstrates that intelligent, agent-driven control over memory
content offers a more scalable and robust alternative to simply enlarging con-
text windows. By structuring what to preserve and how to retrieve it, LLM
agents maintain coherence, reduce repeated deliberation, and improve down-
stream decision-making in long-horizon tasks.

CS224V: Conversational Virtual Assistants with Deep Learning Custom Project agentcreatingagent.web.app

https://agentcreatingagent.web.app

